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Abstract 

The goal of this research is to develop a comprehensive model that describes the integrated 

logistics operations in response to natural disasters. We propose a mathematical model that 

controls the flow of several relief commodities from the sources through the supply chain and 

until they are delivered to the hands of recipients. The structure of the network is in compliance 

with FEMA’s complex logistics structure. The proposed model not only considers details such as 

vehicle routing and pick up or delivery schedules; but also considers finding the optimal 

locations for several layers of temporary facilities as well as considering several capacity 

constraints for each facility and the transportation system. Such an integrated model provides the 

opportunity for a centralized operation plan that can eliminate delays and assign the limited 

resources to the best possible use.  

A set of numerical experiments is designed to test the proposed formulation and evaluate the 

properties of the optimization problem. The numerical analysis shows the capabilities of the 

model to handle the large-scale relief operations with adequate details. However, the problem 

size and difficulty grows rapidly with adding the equity constraints and extending the length of 

the operations.  

Two sets of heuristic algorithms are proposed to solve the proposed mathematical model. To 

solve the multi-echelon facility location problem, four heuristic solution techniques are 

proposed. Also four heuristic algorithms are proposed to solve general integer vehicle routing 

problem. The proposed heuristics were successful in efficiently solving the mathematical model. 

In one example, the heuristics were able to solve the problem in less than two minutes compared 

to the commercial solver that would take several hour of CPU time. 

The organization of the paper is as follow: in the first chapter the attempts required to introduce, 

define, and mathematically model the problem is described. In the second chapter, solution 

approaches are investigated and two sets of heuristic algorithms are described that can solve the 

model proposed in the first chapter.  

The first part of this research presented in chapter 1 was partially done with the help of Grant 

DTRT07-G-0003 from Mid-Atlantic Universities Transportation Center (MAUTC). It is reported 

in this document to keep the continuity and lay the foundation for the rest of the research which 

is conducted under current project from CITSM. 
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CHAPTER 1: INTRODUCTION AND MODELLING 

  

1.1 INTRODUCTION 

In today’s society that disasters seem to be striking all corners of the globe, the importance of 

emergency management is undeniable. Much human loss and unnecessary destruction of 

infrastructure can be avoided with more foresight and specific planning. Emergency management 

(or disaster management) is the discipline of avoiding risks and dealing with risks (Haddow, et 

al. 2007). No country and no community are immune from the risk of disasters. However, it is 

possible to prepare for, respond to and recover from disasters and limit the destructions to a 

certain degree. Emergency management is a discipline that involves preparing for disaster before 

it happens, responding to disasters immediately, as well as supporting, and rebuilding societies 

after the natural or human-made disasters have occurred. Emergency management is a 

continuous process. It is essential to have comprehensive emergency plans and evaluate and 

improve the plans continuously. The related activities are usually classified as four phases of 

Preparedness, Response, Recovery, and Mitigation. Appropriate actions at each phase in the 

cycle lead to greater preparedness, better warnings, reduced vulnerability or the prevention of 

disasters during the next iteration of the cycle.  

During emergencies various aid organizations often face significant problems of transporting 

large amounts of many different commodities including food, clothing, medicine, medical 

supplies, machinery, and personnel from different points of origin to different destinations in the 

disaster areas. The transportation of supplies and relief personnel must be done quickly and 

efficiently to maximize the survival rate of the affected population and minimize the cost of such 

operations. 

Federal Emergency Management Agency (FEMA) is the primary organization responsible for 

preparedness and response to federal level disasters in the United States. The primary mission of 

FEMA is ―to reduce the loss of life and property and protect the nation from all hazards, 

including natural disasters, acts of terrorism, and other man-made disasters, by leading and 

supporting the nation in a risk-based, comprehensive emergency management system of 

preparedness, protection, response, recovery, and mitigation.‖ (www.fema.gov) 
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FEMA has a very complex logistics structure to provide the disaster victims with critical items 

after a disaster strike which involves multiple organizations and spreads all across the country. 

There are seven main components in the supply chain to provide relief commodities for disaster 

victims that are briefly described here: 

FEMA Logistics Centers (LC) - permanent facilities that receive, store, ship, and recover 

disaster commodities and equipment. FEMA has a total of 9 logistics centers. 

Commercial Storage Sites (CSS) - permanent facilities that are owned and operated by private 

industry and store commodities for FEMA. Freezer storage space for ice is an example. 

Other Federal Agencies Sites (VEN) - representing vendors from whom commodities are 

purchased and managed. Examples are Defense Logistics Agency (DLA) and General Services 

Administration (GSA). 

Mobilization (MOB) Centers - temporary federal facilities in theater at which commodities, 

equipment and personnel can be received and pre-positioned for deployment as required. In 

MOBs commodities remain under the control of FEMA logistics headquarter and can be 

deployed to multiple states. MOBs are generally projected to have the capacity to hold 3 days of 

supply commodities. 

Federal Operational Staging Areas (FOSAs) - temporary facilities at which commodities, 

equipment and personnel are received and pre-positioned for deployment within one designated 

state as required. Commodities are under the control of the Operations Section of the Joint Field 

Office (JFO) or Regional Response Coordination Center (RRCC). Commodities are usually 

being supplied from MOB Centers, Logistics Centers or direct shipments from vendors. FOSAs 

are generally projected to hold 1 to 2 days of commodities. 

State Staging Areas (SSA) - temporary facilities in the affected state at which commodities, 

equipment and personnel are received and pre-positioned for deployment within that state. Title 

transfers for delivered federal commodities and cost sharing are initiated in SSAs. 

Points of Distribution (PODs) Sites - temporary local facilities in the disaster area at which 

commodities are distributed directly to disaster victims. PODs are operated by the affected state. 

 

Figure 1 better illustrates this structure. At the top of the pyramid there are 3 types of facilities: 

FEMA Logistics Centers, Commercial Storage Sites, and Other Federal Agencies or Vendors. 
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These permanent facilities store and ship commodities and equipment and are considered as 

―sources‖ in the chain. Mobilization Centers, Federal Operational Staging Areas, and State 

Staging Areas are 3 types of facilities that mainly play the role of ―transshipment‖ points. These 

are temporary facilities at which commodities, equipment and personnel are received and pre-

positioned for deployment to the lower levels. At the end, Points of Distribution Sites are 

temporary local facilities at which commodities are received and distributed directly to disaster 

victims and can be considered as ―demand‖ points. PODs can be local schools, churches, or big 

parking lots inside the affected area. 
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Figure 1 FEMA’s Supply Chain Structure 

Even this simplified presentation of the FEMA’s logistics supply chain indicates the complex 

structure of the system. Finding the optimal sites for 4 levels of temporary facilities is a 

complicated location finding problem. Delivering several types of commodities to disaster 

victims is a multi-commodity capacitated network flows problem. Optimizing the movement of 

vehicles in the network is a dynamic vehicle routing problem with mixed pick up and delivery 
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operations. Usually more than one transportation mode is used in disaster response operations 

which makes the problem a multimodal transportation problem. Other characteristics that make 

the problem unique include, but are not limited to, importance of quick response and fast 

delivery, shortage of supply versus overwhelming demands, insufficient capacity of facilities and 

transportation system, and dynamic environment of the emergency situations. 

The goal of this research is to develop a comprehensive model that describes the integrated 

supply chain operations in response to natural disasters. An integrated model that captures the 

interactions between different components of the supply chain is a very valuable tool. It is ideal 

to have a model that controls the flow of relief commodities from the sources through the chain 

and until they are delivered to the hands of recipients. This research will offer a model that not 

only considers details such as vehicle routing and pick up or delivery schedules; but also 

considers finding the optimal location for temporary facilities as well as considering the capacity 

constraints for each facility and the transportation system. Such a model provides the opportunity 

for a centralized operation plan that can eliminate delays and assign the limited resources in a 

way that is optimal for the entire system.  

1.2 LITERATURE REVIEW 

Altay and Green (2006) surveyed the existing literature of emergency disaster management. 

They concluded that most of the disaster management research was related to social sciences and 

humanities literature. However, they realized the literature trend that more studies are focusing 

on OR/MS techniques in recent years and emphasized the need for more research in future. In 

the following, a summery of studies is presented that used OR/MS techniques to model and 

optimize the emergency disaster management activities. This is not an exclusive list of 

publication in the field and is only intended to focus on key studies in the past that successfully 

used techniques that are relevant to the subject of this research. 

Haghani and Oh (1996) proposed a formulation and solution of a multi-commodity, multi-modal 

network flow model for disaster relief operations. Their model can determine detailed routing 

and scheduling plans for multiple transportation modes carrying various relief commodities from 

multiple supply points to demand points in the disaster area. They formulated the multi-depot 

mixed pickup and delivery vehicle routing problem with time windows as a special network flow 

problem over a time-space network. The objective was minimizing the sum of the vehicular flow 
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costs, commodity flow costs, supply/demand storage costs and inter-modal transfer costs over all 

time periods.  

Barbarosoglu et al. (2002) focused on tactical and operational scheduling of helicopter activities 

in a disaster relief operation. They proposed a bi-level modeling framework to address the crew 

assignment, routing and transportation issues during the initial response phase of disaster 

management in a static manner. The top level mainly involves tactical decisions of determining 

the helicopter fleet, pilot assignments and the total number of tours to be performed by each 

helicopter. The base level addresses operational decisions such as the vehicle routing of 

helicopters from the operation base to disaster points in the emergency area given the solution of 

the top level. 

Barbarosoglu and Arda (2004) developed a two-stage stochastic programming model for 

transportation planning in disaster response. They expanded on the deterministic model of 

Haghani and Oh (1996) by including uncertainties in supply, route capacities, and demand 

requirements. The authors designed 8 earthquake scenarios to test their approach on real-world 

problem instances. It is a planning model that does not deal with the important details that might 

be required at strategic or operational level. It does not address facility location problem or 

vehicle routing problem.  

Ozdamar et al. (2004) addressed an emergency logistics problem for distributing multiple 

commodities from a number of supply centers to distribution centers near the affected areas. 

They formulated a multi-period multi-commodity network flow model to determine pick up and 

delivery schedules for vehicles as well as the quantities of loads delivered on these routes, with 

the objective of minimizing the amount of unsatisfied demand over time. The structure of the 

proposed formulation enabled them to regenerate plans based on changing demand, supply 

quantities, and fleet size.  

Yi and Ozdamar (2007) proposed a model that integrated the supply delivery with evacuation of 

wounded people in disaster response activities. They considered establishment of emergency 

facilities in disaster area to serve the medical needs of victims immediately after disaster. They 

used the capacity of vehicles to move wounded people as well as relief commodities. Their 

model resulted in a more compact formulation but post processing was needed to extract detailed 

vehicle routing and pick up or delivery schedules.  
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In a more recent study, Balcik and Beamon (2008) proposed a model to determine the number 

and locations of distribution centers in relief operations. They formulated the location finding 

problem as a variant of maximum covering problem for a set of likely scenarios. Their objective 

function maximizes the total expected demand covered by the established distribution centers. 

They also solve for the amount of relief supplies to be stocked at each distribution center to meet 

the demands. Their study is one of the first to solve location finding problem in relief operation; 

however, they do not consider the location problem as part of a supply chain network.   

Based on our literature review, there are not many publications that directly applied network 

modeling and optimization techniques in disaster response. Among those studies, there is no 

model that has integrated the interrelated problems of large-scale multi-commodity multimodal 

network flow problem, vehicle routing problem with split mixed pick up and delivery, and 

optimal location finding problem with multiple layers. Also to the best of our knowledge, there is 

no mathematical model that describes the special structure of FEMA’s supply chain system. 

1.3 PROBLEM DESCRIPTION 

Logistics planning in emergencies involves sending multiple relief commodities (e.g., medicine, 

water, food, equipment, etc) from a number of sources to several distribution points in the 

affected areas through a chain structure with some intermediate transfer nodes. The supplies may 

not be available immediately but arrive over time. It is a difficult task to decide on the right type 

and quantity of relief items, the sources and destinations of commodities, and also how to 

dispatch relief items to the recipients in order to minimize the pain and sufferings for disaster 

victims. 

It is necessary to have a quick estimation of the demands during the initial response time. It is 

essential to know the types of required commodities, the amount of each commodity per person 

or household, an estimation of the number of victims, and the geographical locations of the 

demands. The list of commodities includes but is not limited to water, food, shelter, electric 

generators, medical supplies, cots, blankets, tarps and clothing. Some of the demand items are 

one-time demand while others are recurring (e.g. tent vs. water) and some demands are subject to 

expiration while others may be carried over (e.g. food vs. clothing). The demand usually 

overwhelms the capacity of the distribution network. The demand information might not be 

complete and accurate at the beginning but it is expected to improve over time. 
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Different aid organizations may employ their unique supply chain structure that governs the 

types of facilities to be used and the relationships among components of the chain. For example 

FEMA has its own supply chain structure for disaster response which is previously introduced in 

section 2. FEMA has distinguished 7 layers of facilities in its logistics chain. First 3 layers are 

permanent facilities to store and ship the relief items while the next 4 layers are temporary 

transfer facilities that their numbers and locations will be chosen during the response phase. 

During the initial response time it is also necessary to set up temporary transfer facilities to 

receive, arrange, and ship the relief commodities through the distribution network. In risk 

mitigation studies for disasters, possible sites where these facilities can be situated are specified. 

Logistics coordination in disasters involves the selection of sites that result in the maximum 

coverage of affected areas and the minimum delays for supply delivery operations. Usually the 

number of these temporary facilities is limited because of the equipment and personnel 

constraints. 

Each facility in the chain is subject to some capacity constraints.  Capacities are defined for 

operations such as sending, receiving, and storing commodities. These capacities are different for 

each facility and are determined based on the type, size and layout of that facility. Also the 

availability of personnel and equipment may influence the capacities. In general, the capacity 

constraints can be defined in terms of the weight or volume of the commodities or they can be 

defined in terms of the numbers of the vehicles that are sent, received, or parked at the facility at 

a certain time. These are two different aspects and it is recommended to consider both capacities 

for each facility.  

The transportation capacity is usually very limited in early hours or days after a disaster. It is 

very critical to assign the available fleet to the best possible use at any time. There is usually a 

shortage of vehicles in emergency operations so the model must keep track of the empty trucks 

in order to assign them to new missions after each delivery. More than one transportation mode 

may be hired to facilitate emergency response logistics. Consequently, the coordination and 

cooperation between transportation modes are necessary for managing the response operations 

and providing a seamless flow of relief commodities toward the aid recipients. The intermodal 

transfer of commodities is expected to happen in specific facilities but may be subject to some 

capacity constraints and transfer delays. 
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Vehicle routing and scheduling during the disaster response is also very important. A large 

number of vehicles might be used in response to large-scale disasters. The model should be able 

to keep track of routings for each individual vehicle. Also, it is required to have a detailed 

schedule for pick up and delivery of relief commodities by each vehicle in each transportation 

mode. Nonetheless, the vehicle routing in disaster situations are quite different from 

conventional vehicle routings. The vehicles do not need to form a tour and return to the initial 

depot, but they might be assigned to a new path at any time. They are expected to perform mixed 

pickup and delivery of multiple items between different nodes of the network as the supplies and 

demands arise over time.  

The disaster area is a dynamic environment and emergency logistics are very time sensitive 

operations. The disaster might still be evolving when the response operations start. Also the lack 

of vital information about available infrastructure, supplies, and demands in the initial periods 

after the disaster may complicate this dynamic environment even more. The high stake of life-or-

death for disaster victims urges the needs for higher levels of accuracy and tractability. Despite 

all the necessary preparedness and planning at strategic level, dealing with the problem at 

operational level is very important. Modeling and optimization at operation level is a necessary 

approach to capture the realities of time sensitive emergency response operations.  

The other important issue is considering equity and fairness among aid recipients. Based on the 

geographical dispersion of victims and availability of resources over time and space, it is easy to 

favor the demands of one group of victims over another. Even though some variations are 

inevitable, the ideal pattern is to distribute the help items evenly and fairly among the victims. 

The models and procedures with general objective functions are prone to ignore the equity and 

level of service requirements in order to get a better numerical solution. It is very important to 

realize the need for procedures and constraints that prevent any sort of discrimination among 

victims, as much as possible. 

The equity constraint between populations can be defined over time, and over commodities. It is 

not appropriate to satisfy all the demands of one group in early stages while the other group of 

victims does not receive any help until very later times. It is more acceptable to fairly distribute 

the available relief items among all recipients even though it might not be enough for every one 

at the current instance.  The relief operations will continue over time as more resources are 

expected to become available. The equity over commodities is also important. For example, it is 
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not acceptable to send all the available water to one group of victims and send all of the available 

meals to another group. It is expected to fairly share the limited resources of transportation 

capacity and disaster relief commodities. 

 

Some main characteristics of the modeling approach can be summarized as follow: 

 Operational Level: to capture time sensitive details of the emergency response 

operations, the problem is formulated at operational level.  

 FEMA Structure: the proposed model is in compliance with FEMA’s 7-layer supply 

chain structure. 

 Time-Space Network: to account for the dynamic decision process, the physical network 

must be converted to a time-space network. The nodes of this network represent the 

facilities in FEMA structure. The links consist of existing physical links, delay or storage 

links, and intermodal transfer links. 

 Facility Location: the optimal locations to establish temporary facilities are selected 

from a set of potential sites. The maximum number of each facility type and their 

locations are dynamic and can change over time as the relief operations proceed. 

 Facility Capacity: each facility has maximum capacities for sending, receiving, and 

storing commodities as well as vehicles. 

 Demand: the demand is multi-commodity and usually overwhelms the capacity of the 

distribution network. Specific decision variables are defined that keep track of unsatisfied 

demand at each demand point for each commodity and during all time periods. 

 Supply: similar to the demand, the supply is multi-commodity and may come from 

various sources. The problem is formulated as a variation of multi-commodity network 

flow problem. 

 Multi-Modal: since more than one mode of transportation may be hired in the 

emergency response logistics, the problem is a variation of multi-modal network flow 

problem. 

 Vehicle Routing: in order to model the complicated routing and delivery operations in 

disaster response, the vehicles are treated as flow of integer commodities over a time-
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space network. This results in a mixed integer multi-commodity formulation which is 

very flexible. 

 Network Capacity: a set of constraints is used to link the relief commodities with the 

vehicles. As a result, the flow of commodities is only possible when accompanied by 

vehicles with enough capacity for that specific time and route. 

 Integrated Model: all decisions of facility location, supply delivery, and vehicle routing, 

are interrelated. Our approach provides an integrated model to find the global solution for 

this problem. 

 Equity: equity and fairness among disaster victims is modeled through a set of 

constraints that enforce a minimum level-of-service for each victim. The equity can be 

enforced for each relief item and over all time periods.  

 Objective Function: the objective of this model is to minimize the pain and suffering of 

the disaster victims. It is formulated as weighted total of unsatisfied demand summed 

over all victims, for all relief items, and during all time periods. 

1.4 PROBLEM FORMULATION 

In this section initially the notations and required parameters for the formulation are introduced. 

After that, the decision variables of the mathematical model are defined. Then the objective 

function formulation is presented followed by formulation and introduction of the constraints of 

the problem.  

1.4.1 Notations 

N  = Set of all nodes. Nji , are indices 

LC = Set of Logistic Center sites 

CSS = Set of Commercial Storage Sites 

VEN = Set of commodity Vendor sites 

MOB = Set of potential sites for Mobilization Centers 

FOSA = Set of potential sites for Federal Operational Staging Areas 

SSA = Set of potential sites for State Staging Areas 

POD = Set of Points of Distribution (demand nodes) 

U  = Set of supply nodes and transshipment nodes (LC, VEN, CSS, MOB, FOSA, SSA) 

V = Set of Permanent Facilities (LC, CSS, VEN) 
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W = Set of potential sites for all Temporary Facilities (MOB, FOSA, SSA) 

C = Set of Commodities, Cc is an index 

M = Set of transportation Modes, Mm is an index 

T = Time horizon of response operations. Ttt , are indices 

1.4.2 Parameters 

Supply and Demand 

c

itSup  = Amount of exogenous supply of commodity type c in node i at time t 

c

itDem = Amount of exogenous demand of commodity type c in node i at time t 

m

itAV  = Number of vehicles of mode m added to the network in node i at time t, negative if vehicles 

removed 

c

itRU   = Relative urgency of one unit of commodity c, in node i at time t 

Number of Facilities  

tMOBmax  = Maximum number of Mobilization centers at time t 

tFOSAmax = Maximum number of Federal Operational Staging Areas at time t 

tSSAmax     = Maximum number of State Staging Areas at time t 

Facility Capacity  

m

itUcap  = Unloading capacity for the facility in node i for mode m at time t 

itScap   = Storage capacity for the facility in node i at time t 

m

itLcap  = Loading capacity for the facility in node i for mode m at time t 

m

itVRcap = Maximum number of mode m vehicles that can be received at the facility in node i at time t 

m

itVPcap = Maximum number of mode m vehicles that can be parked (carried over) at the facility in node 

i from time t to time t + 1 

m

itVScap = Maximum number of mode m vehicles that can be sent out from the facility in node i at time t 

Vehicle Capacity 

mcap  = Loading capacity of vehicles of mode m   

cw  = Unit weight of commodity c 
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Transportation 

ijmt  = Travel time from node i to node j for vehicles of mode m   

mmK   = Time required to transfer commodities from mode m to mode m  

1.4.3 Decision Variables 

Location Problem 

t

iLoc  = 1 if temporary facility of appropriate type is located at potential site i, at time t; equal to 0 

otherwise. The temporary facility will be a Mobilization Center if MOBi , a Federal 

Operational Staging Area if FOSAi , and a State Staging Area if SSAi . 

Commodity and Vehicle Flow 

cm

ijtX  = Flow of commodity type c shipped from node i to node j by mode m at time t 

m

ijtY  = Flow of vehicles of mode m from node i to node j at time t 

c

itCX  = Amount of commodity type c in node i which is carried over from time period t to t + 1 

m

itCY  = Number of vehicles of mode m in node i which is carried over from time period t to t + 

1 

mcm

itXT

= Amount of commodity type c in node i which is transferred from mode m to mode m′ at time t 

c

itUD  = Amount of unsatisfied demand of commodity type c in node i at time t 

1.4.4 Objective Function 

Minimize 



Vi t c

c

it

c

it UDRU         (1) 

The objective function in equation (1) minimizes the total amount of weighted unsatisfied 

demand over all commodities, times, and demand points. c

itRU is the relative urgency associated 

with each commodity, time, and demand point. If there is any desire to consider a commodity 

being more important than others at any time or for any demand point, c

itRU can enforce that 

desire. Higher values of c

itRU translate into higher urgencies. If all commodities happen to be of 

the same importance, c

itRU  can be set equal to 1.  
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1.4.5 Constraints 

Commodity Flow Constraints 

Supply nodes and Transfer nodes: 

tmcUiCXXTX

SupCXXTX

c

it

m

mcm

it

j

cm

ijt

c

it

c

ti

m

mmc

kti

j

cm

ttji mmjim

,,,

)1()()(



















 

      (2) 

Demand nodes: 

tcPODiUDDemUDX c

ti

c

it

c

it

m j

cm

ttji jim
,,)1()(       (3) 

 

Equations (2) and (3) enforce the conservation of the flow for all commodities and modes at all 

nodes and time periods. Equation (2) requires that for supply nodes and transfer nodes, the sum 

of the flows entering each node plus exogenous supply should be equal to the sum of the flows 

that leave the same node. Equation (3) shows that the total flow entering each demand node plus 

the unsatisfied demand is equal to the exogenous demand at that node plus any unsatisfied 

demand from the previous time period. 

Vehicular Flow Constraints 

tmNiCYYAVCYY m

it

j

m

ijt

m

it

m

ti

j

m

ttji jim
,,)1()(   

    (4) 

Equation (4) represents the conservation of flow for the vehicles. At any node i and time period 

t, total number of available vehicles of mode m is equal to the number of vehicles of mode m that 

left node j for node i at time 
ijmtt  , plus the number of vehicles that were carried over from the 

previous time period, plus the number of vehicles that are added or removed to the fleet at that 

time. These vehicles are either sent out of the node or carried over to the next time period.  

Linkage between Commodities and Vehicles 

tmNjiXwYCap
c

cm

ijtc

m

ijtm ,,,          (5) 

Constraint (5) makes sure that commodities are not sent out of a node unless a number of 

vehicles with enough capacity are available at that node to carry those commodities. 
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Facility Capacities for Permanent Facilities 
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Equations (6), (7), and (8) are the maximum capacity for loading, unloading, and storage of 

commodities at permanent facilities. Equations (9), (10), and (11) require the maximum number 

of vehicles that are sent, received, and parked at each facility to be less than the relevant 

capacities. 

Facility Location and Capacities for Temporary Facilities 
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Equations (12) through (14) enforce the loading, unloading, and storage capacity for temporary 

facilities. If the facility is selected to be set up at potential site i, the respected capacity constraint 

is enforced. If it is decided not to set up the temporary facility at location i, the same constraints 

require that all the flows in and out of that node to be equal to zero. 

Equations (15) through (17) require the maximum number of vehicles that are sent, received, and 

parked at each temporary facility to be less than the relevant capacities. The numbers are zero if 

the facility is not selected for that node. Equations (18) through (20) oblige the maximum 

number of each temporary facility type to be limited by the maximum allowable numbers for that 

facility type during the chosen time periods. 

Capacities for PODs: 
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Equation (21) enforces the commodity unloading capacity at points of distribution. Equation (22) 

and (23) represent the vehicle receiving and vehicle parking capacities for each point of 

distribution. 

Equity Constraint: 
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Equation (24) enforces a minimum percentage of total demand for a specific commodity c, to be 

satisfied by the time period t. It might not be always possible to deliver the required amount to 

all demand nodes by time t; in that case, this constraint can cause infeasibility. Equation (25) 

requires that from all commodities being delivered to node i by time t, at least min percent to be 

commodity c. Equation (26) ensures that sum of total commodities delivered at point i to be 

more than a minimum percentage of all the commodities that are being delivered among all 

demand points. 

Nonnegativity and Integrality: 

cm

ijtX ,
c

itCX ,
mcm

itXT

, 0c

itUD        Real-valued variables 

m

ijtY , 0m

itCY          General integer variables 

)1,0(t

iLOC          Binary integer variables 

1.4.6 Formulation Summary 

The proposed mathematical model can be summarized as follows: 

 

Minimize Total Weighted Unsatisfied Demand 

Subject to: 

Commodity Flow Constraints 

Vehicular Flow Constraints 

Constraints that Link Commodities and Vehicles 

Facilities Location Constraints 

Facility Capacities Constraints 

Equity (recipients/commodities) Constraints 

 Nonnegativity and Integrality Constraints 

 

1.5 NUMERICAL EXPERIMENT 

In this section, a set of numerical experiments are conducted to evaluate the features of the 

proposed formulation. The problem size is kept small so it can be solvable by commercial solver 
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and the results can be analyzed easier. However, the small-size problem still fully represents all 

elements of the proposed model. The experimental study complies with FEMA’s structure and 

scale of the problem is comparable to the real-world-size problems.  

The following example is an imaginary scenario where a natural disaster such as a hurricane strikes the 

southern coast of the United States. It is assumed that two separate regions, one in Mississippi and one in 

Louisiana, are affected. 

For this example, it is assumed that only the Atlanta logistics center (LC) is used. One commercial 

storage site (CSS) in Charlotte, North Carolina and one vendor (VEN) in Nashville, Tennessee are also 

used to store the relief items. For temporary facilities at federal level, four potential sites for mobilization 

centers (MOB) are suggested. There are also four potential sites for federal operational staging areas 

(FOSA). These facilities are able to send supplies to both disaster areas. At the state level, a total of 10 

potential sites for state staging areas (SSA) are suggested. Four potential SSA are planned to serve the 

disaster area in Mississippi and six potential SSA are suggested for Louisiana. The initial post-disaster 

surveys estimate that approximately 20’000 person are affected and twenty points of distribution (POD) 

are needed to serve this population. Eight PODs are selected for Mississippi area and twelve PODs will 

serve the victims in Louisiana. For this numerical study, there are a total of 41 permanent and temporary 

facilities in the network. Figure 2 illustrates the locations of these facilities on the map. 
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Figure 2 - Map of Federal Level and State Level Facilities 

 

Supply and Demand 

There are several commodities that need to be distributed among the disaster victims. The type 

and amount of each commodity depends on many factors such as type of disaster, level of 

destruction, weather conditions, etc. Table 1 suggests a list of required items and the amount per 

day per survivor. Since most items are bulky, volume capacity is expected to be binding versus 

the maximum weight load for each vehicle. Adding up the last column of Table 1, it can be seen 

that for each survivor a total of about 30 cubic ft of relief items per day are required. For the sake 

of simplicity, it is assumed that only 2 types of commodities (commodity 1 and commodity 2) 

are required in this numerical experiment. However, to preserve the scale of demands, the total 

amount per each survivor is kept at 30 ft
3
 per day. It is also assumed that survivors in disaster 

zone 1 (Mississippi), need 20 cft of commodity 1 and 10 cft of commodity 2, per day. On the 

other hand, survivors in disaster zone 2 (Louisiana), assumed to need 10 cft of commodity 1 and 

LC(1)

CSS(2)

VEN(3)

MOB(4)MOB(5)
MOB(6)

MOB(7) FOSA(8)

FOSA(9)

FOSA(10)
FOSA(11)

LC(1)

CSS(2)

VEN(3)

MOB(4)MOB(5)
MOB(6)

MOB(7) FOSA(8)

FOSA(9)

FOSA(10)
FOSA(11)

SSA(12)
SSA(13)

SSA(14)

SSA(15)

(22)

(23)(24)

(25)(26)

(27)

(28)(29)

SSA(12)
SSA(13)

SSA(14)

SSA(15)

(22)

(23)(24)

(25)(26)

(27)

(28)(29)

SSA(16)

SSA(17)

SSA(18)

SSA(19)

SSA(21)

SSA(20)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)
(40)

(41)

SSA(16)

SSA(17)

SSA(18)

SSA(19)

SSA(21)

SSA(20)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)
(40)

(41)



  

 19 

20 cft of commodity 2, per day. This will provide the opportunity to analyze the effects of 

different demand types on the model. 

Table 1. List of Required Items for Survivors of a Disaster 

 

Item 

Quantity per day 

per survivor 

Survivors 

served 

Notional 

dimensions (ft) 
Volume 

(ft3) 

Total requirement 

per survivor (ft3) 
L W H 

Water (drinking) 1 gallon 1 1.0 1.0 1.0 1.0 1.000 

Water (non-

potable) 
1 gallon 1 1.0 1.0 1.0 1.0 1.000 

Meals (MREs) 3 meals 1 1.0 1.0 1.5 1.5 4.500 

Portable shelter 1 shelter 4 6.0 2.0 1.5 18.0 4.500 

Basic medical kit 1 kit 3 1.0 1.0 1.0 1.0 0.333 

Cot 1 cot 2 3.0 2.0 1.0 6.0 3.000 

Blanket 1 blanket 1 2.0 2.0 0.5 2.0 2.000 

Tarp 1 tarp 3 3.0 3.0 1.0 9.0 3.000 

Ice 1 gallon 10 1.0 1.0 1.0 1.0 0.300 

Baby supplies 1 box 5 1.0 1.0 1.0 1.0 0.600 

Generator 1 generator 500 8.0 8.0 6.0 384.0 0.768 

Clothing 1 bag 1 2.0 2.0 1.0 4.0 4.000 

Plywood 2 sheets 3 4.0 8.0 0.1 3.2 2.133 

Nails 1 box 3 1.0 1.0 1.0 1.0 0.333 

       Source www.Fema.org 

 

Supply sources are the Logistics Center, the Commercial Storage Site, and the Vendor. It is 

assumed that 40% of total supply is stored at the LC, 20% at the CSS, and 40% at the vendor 

site. Total demand for 20,000 survivors will be 600,000 ft3 per day. The demand for Commodity 

1 is 280,000 ft3 per day and the demand for Commodity 2 is 320,000 ft3 per day. For this 

problem, it is assumed that supplies for one day are available and are stored at those three supply 

sources. 

Vehicles 

For this problem, only one transportation mode is used which is trucking. The common vehicle 

is a 53ft trailer truck which has the volume capacity of approximately 6000 cft. For the base 

case, 100 trucks are available at the beginning of the operations. Initially, 40 trucks are located at 

LC, while 30 trucks are at CSS and VEN sites, each. 

Network links and Travel times 
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There are 2 types of flows in this problem, flow of commodities and flow of vehicles. The 

commodity flows must comply with the hierarchical structure of FEMA explained in Figure 1. 

For example, supplies from a VEN can only be sent to LC, or supply from LC can be sent to all 

MOBs and FOSAs. Supplies in MOBs can be sent to other MOBs or to FOSAs. Supplies from 

FOSAs can be sent to other FOSAs and to SSAs, as long as it remains in the same State. 

Supplies received at each SSA can be sent to other SSAs in the same State or must be delivered 

to PODs of that State. 

The flow of vehicles in the network is much less restricted compared to commodity flows. It is 

assumed that there is a link between each pair of nodes in the network. Basically, empty vehicles 

are free to travel between each two nodes of the network without the need to visit any 

intermediate nodes. As a result, when a vehicle is carrying supplies, it must follow the more 

restricted hierarchical network of FEMA. But when the vehicle unloads all its supply, either at 

intermediate nodes or final PODs, it is free to go to any other node in the network to pick up 

supplies and start a new round of delivery. 

Link travel time functions for the proposed formulation can be completely arbitrary. The 

formulation is capable of dealing with time-variable travel times as well as fixed travel times. 

For this numerical study, the travel distance between any two nodes of the network is assumed to 

be equal to their Euclidian distance. The travel speed is assumed to be fixed for all the vehicles 

on the federal level network (between LC, CSS, VEN, MOBs, and FOSA) and to be equal to 50 

miles per hour. However, for State level network (between FOSAs, SSAs, and PODs) the travel 

speed is assumed to be 40 miles per hour. 

 

Time Scale 

Selection of appropriate time step is a very important factor that can affect the performance of 

time-space networks dramatically. For each time period in the planning horizon, one layer of 

physical network will be added to the problem. This makes the problem size grow extremely fast 

with the number of time steps in the planning horizon. For example if the planning horizon is 

only 1 day, with the choice of time step t = 1 minute, it will be 24 * 60 = 1440 layers of the 

network. So to keep the problem at a reasonable size, it is favorable to have longer time steps. 

On the other hand, shorter time steps will improve the accuracy of modeling the emergency 
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response operations. For example if the time step is 1 hour, it is possible to model the state of the 

system only at every hour and not at the times in between. So from the accuracy perspective, it is 

favorable to have shorter time steps. 

The other important issue in determining the time-step in this problem is the issue of dealing 

with very long and very short links. At the federal level network, nodes are usually far from each 

other and the links can range from a hundred miles to a few thousand miles. The travel time on 

those links with ground transportation can range from a few hours to up to one day or more. 

However, the nodes at the lower levels in the State networks can be very close to each other. It is 

very common to have PODs that are only a few miles apart. In this case, link travel times can be 

in the order of minutes. Figure 3 better shows the issue of scale in this problem on the disaster 

area map. 

 

It is a difficult challenge to select a time-step that is suitable for very short links and very long 

links, at the same time. A very short time-step is necessary to model the short links even though 

it will increase the problem size very quickly. But the main issue is the sensitivity of travel times 

to the selected time-step. If a very short time-step is chosen, say 1 minute, it might be good for 

short links but the travel times on very long links will not be sensitive to that. It is very difficult, 

if not impossible, to predict the travel time between two nodes that are several hundred miles 

apart, with accuracy of 1 minute. For those links the 1-hour unit or 30-minute unit is more 

meaningful.  
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Figure 3 - Issue of Scale in Disaster Area 

 

Geographical Decomposition 

To deal with this issue, a geographical decomposition method is proposed. The nodes at federal 

level (LC, CSS, VEN, MOB, FOSA) will be in one subset and the nodes at each State (FOSA, 

SSA, POD) will form another subset. Since the travel times between nodes in federal level 

network are usually long, it is possible to use a large time-step for them. Using similar argument, 

the State level nodes and links can be modeled with a short time-step. Figure 4 shows this 

decomposition. 
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Figure 4 - Geographical Decomposition for Time Steps 

 

Now the important issue is how to connect these separate time-space networks. Luckily, the 

special structure of FEMA’s supply chain offers the candidates. Federal Operational Staging 

Areas (FOSA) are the one and only interface between flow of commodities in federal level 

facilities and the designated state level facilities. We take advantage of this opportunity and 

select the FOSAs as transfer terminals between the sub-networks. For this numerical study, time-

step for federal zone, 1t , is chosen to be 30 minutes and time-step for state level zones, 2t , is 

selected to be 5 minutes. The travel times for this study are calculated based on the distance and 

a fixed average travel speed explained earlier. So based on the newly defined time steps of 1t  and 

2t , travel times of federal zone links are being rounded to the nearest 30 minute interval and the 

travel times of state level zone links are being rounded to the nearest 5 minute.  

The way in which the FOSA nodes connect two sub-networks with different time steps is shown 

in Figure 5. This graph indicates that the arcs entering FOSA from federal network or leaving the 

FOSA toward the federal network can exist only at 1t =30-minute intervals.  But the arcs that 

connect FOSA to state level facilities exist for every 2t =5-minute interval. The implication is 

that the downward flows (from federal network to state network) entering a given FOSA can 

leave that FOSA at any 5-minute period after that. However, the upward flows (from state 

VEN LC CSS 

MOB MOB 

FOSA FOSA 

SSA SSA SSA SSA 

POD POD 
POD POD POD 

POD 

fed 

St1 St2 



  

 24 

network to federal network) that enter a FOSA at any time other than 30-minute intervals, need 

to wait at the FOSA until the first available 30-minute interval. 

 

 

Figure 5. Time-Space network with Different Time Steps at FOSA 

 

Case Study Scenarios 

To better evaluate the characteristics of the proposed model, 10 numerical case studies are 

generated. All case studies are based on the described disaster scenario with variations in the 

subset of enforced constraints and some parameter values. Table 2 describes the considered case 

studies. In general, the case studies in Table 2 start from simple and become more complicated 

toward the end. For example, the first case study only considers the conservation of flow and 

vehicle capacity constraints. Other constraints are gradually added to the formulation in the other 

case studies up to Case 7 which has the largest number of constraint types for a one day 
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operation. First seven case studies consider only one day of operations while in the last three 

cases two days of operations are formulated. 

 

Table 2. Numerical Case-Study Descriptions 

Case 

No 
Constraints Used Details 

Variables 
Constraints 

File Size 

(Kb) Real Val. Integer 

1 
Flow Conservation + Vehicle 

Capacity 

1 day 

100 Trucks 
133,275 157,972 81,891 13,331 

2 
Flow Conservation + Vehicle 

Capacity 

1 day 

200 trucks 
133,275 157,972 81,891 13,331 

3 
Flow Conservation + Vehicle 

Capacity + Facility Capacity 

1 day 

100 Trucks 
133,275 157,972 87,094 15,846 

4 
Flow + Facility Location (2,2,5)* + 

Facility Capacity 

1 day 

100 Trucks 
133,275 157,972 87,094 15,846 

5 
Flow + Facility Location (2,2,2) + 

Facility Capacity 

1 day 

100 Trucks 
133,275 157,972 87,094 15,846 

6 
Flow + Facility Capacity Const.+ 

Equity-1 Const 

1 day 

100 Trucks 
133,275 157,972 87,174 17,214 

7 
Flow + Facility Location (2,2,5) + 

Facility Capacity  + Equity-1,2,3  

1 day 

100 Trucks 
133,275 157,972 87,294 61,084 

8 
Flow Conservation + Vehicle 

Capacity,  day by day Supply 

2 days  

100 Trucks 
265,995 315,316 163443 27,439 

9 
Flow + Facility Location (2,2,5) + 

Facility Capacity , day by day Supply 

2 days  

100 Trucks 
265,995 315,316 173,878 32,673 

10 
Flow + Capacity + location (2,2,5) , 

2 day supply available 

2 days  

100 Trucks 
265,995 315,316 173,878 32,673 

* Facility location with maximum number of (MOB, FOSA, SSA) 

 

CPLEX commercial solver is used to solve the MIP model formulations. Table 3 summarizes the 

optimization results for all 10 case studies. Case-1 is the ―base case‖ with only conservation of 

flow constraint and vehicle capacity constraints modeled for one day of operations. The solver 

found the optimal solution in approximately 4 minutes. Figure 6 shows the percent of unsatisfied 

demand for all victims over time. The first delivery to the nearest demand point took about 7 
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hours. Fifty percent of the total demand was satisfied after 11 hours and 40 minutes. The last 

demand was served after 21 hours and 40 minutes. 

 

Table 3. Summary of Optimization Results 

Case 

Number 
Objective Value 

Last UD 

(hr:min) 

Temp. 

Facilities 

Root Sol. 

Time (s) 
Iterations 

CPU Time 

(sec)† 

1 9.0798 E+07 21:40 (4,4,10) 33.89 14,957 230 

2 8.6118 E+07 15:10 (4,4,10) 10.36 5,502 20 

3 1.0412 E+08 22:05 (4,4,10) 42.73 18,642 778 

4 1.0412 E+08 22:05 (2,2,5) 33.59 17,308 945 

5 1.0978 E+08   24:00§ (2,2,2) 204.19 205,588 5575 

6 1.0439 E+08 21:50 (4,4,10) 42.22 5,810,980 45856* 

7 1.0417 E+08 22:05 (2,2,5) 63.09 7,888,315 81642* 

8 1.7985 E+08 39:10 (4,4,10) 786.34 63,960 4779 

9 2.0859 E+08 44:45 (2,2,5) 2450.91 408,351 14635 

10 1.8921 E+08 48:00§ (2,2,5) 10117.11 2,963,071 231035 

* The solver stopped prematurely with ―out of memory‖ error message. 

§ The relief operations were not finished by the assumed horizon.  

† On a 3.0 GHz Intel Pentium CPU with 2.0 GB RAM 

 

Case-2 is similar to Case-1 but the only difference is that there are 200 trucks available in Case-2 

versus 100 trucks in Case-1. Even though the number of vehicles was increased, the optimal 

solution was found in only 20 seconds. As it can be seen in Table 3, the size of the formulation 

(number of variables and constraints) for Case-2 is equal to Case-1 and this is one of the 

important advantages of current formulation. Since this formulation treats the vehicles as 

commodities, the number of available vehicles appears only as a right-hand-side parameter and 

does not have an effect on the problem size. Figure 4 shows the percent of unsatisfied demand 

over time for Case-2 at optimality. Since there were enough vehicles at the beginning, the 
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vehicles did not need to return to the sources to pick up supplies once they had left. As a result, 

the delivery operations were completed after only 15 hours and 10 minutes. 
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Figure 3. Percent of unsatisfied demand over time for CASE 1 
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Figure 4. Percent of unsatisfied demand over time for CASE 2 
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Case 3 is similar to the base-case with the addition of loading, unloading, and storage capacities 

for all facilities. In this case, there is no limitation on the maximum number of temporary 

facilities and all the potential sites can be active. Figure 5 shows the variation of unsatisfied 

demand for Case-3. The addition of facility capacities prevented the shipment and delivery of 

large quantities of supplies. Instead, the relief commodities are delivered more uniformly over 

time compared to Case-1 and Figure 3. Consequently, the objective function value was higher 

and the operation took 22 hours and 5 minutes, 25 minutes more than Case-1. The running time 

was also increased to about 13 minutes to find the optimal solution. 
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Figure 5. Percent of unsatisfied demand over time for CASE 3 

Finally in Case-7, all constraints are considered. The constraints include conservation of flow for 

the commodities and vehicles, the linkage between commodities and vehicles and capacity of 

each vehicle, facility location with maximums of (2, 2, 5); loading, unloading and storage 

capacities for all facilities, and finally the 3 equity constraints (Equation 24, 25, 26). The full 

problem is very large and difficult problem. After around 23 hours of CPU time and more than 

7.8 million iterations, CPLEX solver stopped and it could not find the optimal solution. 

However, the best integer solution found is very close to the best MIP bound (0.03% gap).  
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Another idea was to extend the relief operations duration from 1 day to 2 days and analyze its 

effect on the problem size and behavior. Case-8 through Case-10 was created to address that 

idea. As can be seen in Table 3, by extending the operations duration from 1 day to 2 days, the 

problem size rapidly grows. For example in Case-10, the CPLEX solver went over 2.9 million 

iterations and it took more than 2 days and 16 hours of CPU time to find the optimal solution. It 

is clear that a problem with complete set of constraints (if the equity constraints were to be added 

to the problem) with 2-days of operations, cannot be solved by the commercial solver. 

1.6 SUMMARY OF CHAPTER 1 

The global increase in the number of natural disasters highlights the need for a better planning 

and operation of the responding agencies. During emergencies various aid organizations often 

face significant problems of transporting large amounts of many different relief commodities 

from different points of origin to different destinations in the disaster areas. The transportation of 

supplies and relief personnel must be done quickly and efficiently to maximize the survival rate 

of the affected population and minimize the cost of such operations. It is very difficult, if not 

impossible, to efficiently operate such a complex system without comprehensive mathematical 

models.  

Offering a centralized comprehensive model that describes the specifics of disaster supply chains 

was the main goal of this research. We aimed at developing a system of computer and 

mathematical models to keep track of operational details of large-scale disaster response 

operations and find the optimal allocation of scarce resources to the most critical tasks in order to 

minimize loss of life and human sufferings.  

Initial investigations in this research showed that FEMA has a complex supply chain spreading 

across the country to coordinate with its state and local government counterparts and with 

nonprofit and for-profit organizations. To the best of our knowledge, there was no study in the 

academic literature that provided a systematic view of the FEMA’s supply chain. This research 

was able to investigate and summarize FEMA’s structure into seven main components and 

showed the relations between them as a network. The proposed network representation was the 

key factor that made the mathematical modeling of the FEMA’s special logistics structure 

possible. 
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The results of this research extended the state-of-the-art by presenting an integrated model at the 

operational level that describes the details of supply chain logistics in major emergency 

management agencies such as FEMA, in response to immediate aftermath of a large-scale 

disaster. The proposed model controls the flow of all the relief commodities from the sources 

through the chain and until they are delivered to the hands of recipients. The proposed model not 

only considers details such as vehicle routing and pick up or delivery schedules; but also 

considers finding the optimal location for temporary facilities as well as considering the capacity 

constraints for each facility and the transportation system. This model provided the opportunity 

for a centralized operation plan that can eliminate delays and assign the limited resources in a 

way that is optimal for the entire system.  

Applying the proposed model on a series of case-study scenarios verified the model and showed 

its capabilities to handle large-scale problems. Using the proposed model provided high level of 

transparency and control over the disaster response operations that was not available before. For 

simpler cases, the commercial solver was able to find the optimal solutions, however, when the 

more difficult constraints such as Equity Constraints were added or when the time horizon was 

extended from 1-day to 2-days, CPLEX was unable to find the optimal solution within a 

reasonable CPU time. 

It is concluded that better solution algorithms or heuristics are needed to address very large 

problem instances. For future steps, two main approaches are suggested to develop heuristic 

solution techniques. The first suggestion is to decompose the model and try to solve a number of 

smaller or easier problems and then aggregate the results. The structure of the model allows for 

spatial decomposition as well as temporal decomposition. In the second approach, the idea is to 

develop heuristics that can find near optimal solutions for the entire model. Various relaxation 

techniques may be used for this type of heuristics. Then the challenge is to find good feasible 

solutions and show whether they are within an acceptable range from a lower bound.  

The result of this research enables central emergency management agencies such as FEMA to 

implement better practices in real-time disaster response at the operational level. However, high 

level of accuracy and control provided in this research can be effectively used toward emergency 

management at strategic and planning levels as well. To do so, a variety of potential disaster 

scenarios can be built and analyzed. Consequently, the planners can investigate the best potential 

locations for temporary facilities or the effect of different fleet size on the operation’s 
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performance in various disaster scenarios. The questions about the best amounts and locations 

for preposition relief supplies can also be investigated.  
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CHAPTER 2: SOLUTION APPROACHES 

 

In this chapter, initially some general integer programming solution approaches from previous 

studies in the literature are reviewed in section 2.1. Then in section 2.2, the solution approaches 

that specifically used in emergency logistics literature are reviewed.  After literature review, in 

section 2.3 a number of solution techniques are proposed for the mathematical model of section 

1.4. Two sets of algorithms are proposed to solve the different parts of the problem. In section 

2.4 solution algorithms are proposed to solve the hierarchical location finding problem. Finally 

in section 2.5, some heuristic algorithms are proposed to solve the general integer vehicle routing 

problem. 

 

2.1. GENERAL SOLUTION APPROACHES FOR INTEGER PROGRAMS 

In General, integer programming problems are very difficult to solve. Over the years, different 

researchers have proposed several very different solution algorithms. Today, the question is how 

to select the best approach. Algorithm selection has become an art as some algorithms work 

better on some specific problem instances. A brief discussion of algorithms is presented in this 

subsection, attempting to expose readers to their characteristics. More detailed review of integer 

and combinatorial optimization algorithms can be found in the integer programming literature 

(e.g. Nemhauser and Wolsey (1999)) 

Historically, linear programming (LP) has been the base for integer programming (IP) solution 

approaches. LP was invented in the late 1940's. Those examining LP relatively quickly came to 

the realization that it would be desirable to solve problems which had some integer variables 

(Dantzig, 1960). This led to algorithms for the solution of pure IP problems. The first algorithms 

were cutting plane algorithms as developed by Dantzig, Fulkerson and Johnson (1954) and 

Gomory (1963). Land and Doig (1960) subsequently introduced the branch and bound algorithm. 

More recently, implicit enumeration (Balas 1965), decomposition (Benders 1962), lagrangian 

relaxation (Geoffrion, 1974) and heuristic approaches have been used to solve various integer 

programs.  

 

McCarl and Spreen (1997) suggested the following classification of general algorithms for 

integer programming problems: 
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2.1.1 CUTTING PLANES 

The first formal IP algorithms involved the concept of cutting planes. Cutting planes iteratively 

remove parts of the feasible region without removing integer solution points. The basic idea 

behind a cutting plane is that the optimal integer point is close to the optimal LP solution, but 

does not fall at the constraint intersection so additional constraints need to be imposed. 

Consequently, constraints are added to force the non-integer LP solution to be infeasible without 

eliminating any integer solutions. This is done by adding a constraint forcing the nonbasic 

variables to be greater than a small nonzero value. The simplest form of a cutting plane would be 

to require the sum of the nonbasic variables to be greater than or equal to the fractional part of 

one of the variables.  

The cutting plane algorithms continually add such constraints until an integer solution is 

obtained. Methods for developing cuts appear in Gomory (1963) in more details. 

Several points need to be made about cutting plane approaches. First, many cuts may be required 

to obtain an integer solution. For example, Beale (1977) reports that a large number of cuts is 

often required (in fact often more are required than can be computationally afforded). Second, 

the first integer solution found is the optimal solution. This solution is discovered after only 

enough cuts have been added to yield an integer solution. Consequently, if the solution algorithm 

runs out of time or space the modeler is left without an acceptable solution (this is often the 

case). Third, given comparative performance with other algorithms, cutting plane approaches 

have faded in popularity (Beale,1977). 

2.1.2 BRANCH AND BOUND 

The second solution approach developed was the branch and bound algorithm. Branch and 

bound, originally introduced by Land and Doig (1960), pursues a divide-and-conquer strategy. 

The algorithm starts with a LP solution and also imposes constraints to force the LP solution to 

become an integer solution similar to cutting planes. However, branch and bound constraints are 

upper and lower bounds on variables.  

The branch and bound solution procedure generates two problems (branches) after each LP 

solution. Each problem excludes the unwanted noninteger solution, forming an increasingly 

more tightly constrained LP problem. There are several decisions required. One must both decide 



  

 34 

which variable to branch on and which problem to solve (branch to follow). When one solves a 

particular problem, one may find an integer solution. However, one cannot be sure it is optimal 

until all problems have been examined. Problems can be examined implicitly or explicitly. 

Maximization problems will exhibit declining objective function values whenever additional 

constraints are added. Consequently, given a feasible integer solution has been found, then any 

solution, integer or not, with a smaller objective function value cannot be optimal, nor can 

further branching on any problem below it yield a better solution than the incumbent (since the 

objective function will only decline). Thus, the best integer solution found at any stage of the 

algorithm provides a bound limiting the problems (branches) to be searched. The bound is 

continually updated as better integer solutions are found. 

The problems generated at each stage differ from their parent problem only by the bounds on the 

integer variables. Thus, a LP algorithm which can handle bound changes can easily carry out the 

branch and bound calculations. 

The branch and bound approach is the most commonly used general purpose IP solution 

Algorithm and it is implemented in many commercial solvers. However, its use can be 

expensive. The algorithm does yield intermediate solutions which are usable although not 

optimal. Often the branch and bound algorithm will come up with near optimal solutions quickly 

but will then spend a lot of time verifying optimality. Shadow prices from the algorithm can be 

misleading since they include shadow prices for the bounding constraints. 

A specialized form of the branch and bound algorithm for zero-one programming was developed 

by Balas (1965). This algorithm is called implicit enumeration.  

2.1.3 LAGRANGIAN RELAXATION 

Lagrangian relaxation (Geoffrion (1974), Fisher (1981)) is another area of IP algorithmic 

development. Lagrangian relaxation refers to a procedure in which some of the constraints are 

relaxed into the objective function using an approach motivated by Lagrangian multipliers. The 

basic Lagrangian relaxation problem for the mixed integer program involves discovering a set of 

Lagrange multipliers for some constraints and relaxing that set of constraints into the objective 

function. The main idea is to remove difficult constraints from the problem so the integer 

programs are much easier to solve. IP problems with structures like that of the transportation 

problem can be directly solved with LP. The trick then is to choose the right constraints to relax 

and to develop values for the lagrangian multipliers leading to the appropriate solution. 
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Lagrangian Relaxation has been used in two settings: 1) to improve the performance of bounds 

on solutions; and 2) to develop solutions which can be adjusted directly or through heuristics so 

they are feasible in the overall problem (Fisher (1981)). An important Lagrangian relaxation 

result is that the relaxed problem provides an upper bound on the solution to the unrelaxed 

problem at any stage. Lagrangian relaxation has been heavily used in branch and bound 

algorithms to derive upper bounds for a problem to see whether further branching down on that 

branch is worthwhile.  

 

2.1.4 BENDERS DECOMPOSITION 

Benders Decomposition is another algorithm to solve integer programs. This algorithm solves 

mixed integer programs via structural exploitation. Benders (1962) developed the procedure 

which decomposes a mixed integer problem into two problems; an integer master problem and a 

linear subproblem. Then these problems are solved iteratively. Consider the following 

decomposable mixed IP problem: 

 

 Maximize   FX   +   CZ 

 s.t.  GX   ≤  b1 

   HX + AZ ≤  b2 

     DZ ≤  b3 

   X is integer,  Z  ≥  0 

 

Assuming X* is a feasible set of points for integer variables X, then the subproblem for any 

given X* would be: 

 

Maximize  CZ 

 s.t.  AZ  ≤ b2  -  HX* (α) 

   DZ  ≤ b3  (β) 

   Z   ≥   0 

Solution to this subproblem yields the dual variables in parentheses. In turn a "master" problem 

is formed as follows: 
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Maximize   FX   +   Q 

X, α, β, Q 

 s.t.  Q  ≤  αi (b2 – HX) + βi b3 for i = 1,2,3…, p 

   GX  ≤  b1 

   X is integer ,  Q is unrestricted 

 

This problem contains the dual information from above and generates a new X value. The 

constraint involving Q gives a prediction of the subproblem objective function arising from the 

dual variables from the ith previous guess at X. In turn, this problem produces a new and better 

guess at X. Each iteration adds a constraint to the master problem. The objective function 

consists of FX + Q, where Q is an approximation of CZ. The master problem objective function 

therefore constitutes a monotonically nonincreasing upper bound as the iterations proceed. The 

subproblem objective function (CZ) at any iteration plus FX can be regarded as a lower bound. 

The lower bound does not increase monotonically. However, by choosing the larger of the 

current candidate lower bound and the incumbent lower bound, a monotonic nondecreasing 

sequence of bounds is formed. The upper and lower bounds then give a monotonically 

decreasing gap between the bounds. Benders decomposition convergence occurs when the 

difference between the bounds is driven to zero. When the problem is stopped with a tolerance, 

the objective function will be within the tolerance, but there is no relationship giving distance 

between the variable solutions found and the true optimal solutions for the variables.  

 

Convergence will occur in a practical setting only if for every X a relevant set of dual variables is 

returned. This will only be the case if the subproblem is bounded and has a feasible solution for 

each X that the master problem yields. This may not be generally true. Also the boundedness and 

feasibility of the subproblem says nothing about the rate of convergence. The real art of utilizing 

Benders decomposition involves the recognition of appropriate problems and/or problem 

structures which will converge rapidly. The procedure can work very poorly for certain 

structures (Sherali 1981). 

 

In general: 
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1. The decomposition method does not work well when the X variables chosen by the 

master problem do not yield a feasible subproblem. Thus, the more accurately the 

constraints in the master problem portray the conditions of the subproblem, the faster will 

be convergence.  

2. The tighter (more constrained) the feasible region of the master problem the better.  

3. When possible, constraints should be entered in the master problem precluding feasible 

yet unrealistic (suboptimal) solutions to the overall problem.  

 

The most common reason to use Benders is to decompose large mixed integer problem into a 

small, difficult master problem and a larger simple linear program. This allows the solution of 

the problem by two pieces of software which individually would not be adequate for the overall 

problem. It should be noted that in Benders decomposition method, the master problem is still an 

integer program that might be very difficult to solve. 

 

2.1.5 HEURISTICS 

Many IP problems are combinatorial and difficult to solve by nature. In fact, the study of NP 

complete problems (Papadimitrou and Steiglitz (1982)) has shown extreme computational 

complexity for problems such as the traveling salesman problem. Such computational difficulties 

have led to a large number of heuristics. These heuristics are used when: a) the quality of the 

data does not merit the generation of exact optimal solutions; b) a simplified model has been 

used, and/or c) when a reliable exact method is not available, computationally attractive, and/or 

affordable. 

Arguments for heuristics are also presented regarding improving the performance of an optimizer 

where a heuristic may be used to save time in a branch and bound code, or if the problem is 

repeatedly solved. Many IP heuristics have been developed, some of which are specific to 

particular types of problems. For example, there have been a number of traveling salesman 

problem heuristics as reviewed in Golden et al (1980). Zanakis and Evans (1981) provide a 

general review of heuristics. 

Generally, heuristics perform well on special types of problems, quite often coming up with 

errors of smaller than two percent (McCarl and Spreen (1997)). Zanakis and Evans (1981) 

provide discussions of selections of heuristics vis-a-vis one another and optimizing methods.  
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2.1.6 STRUCTURAL EXPLOITATION 

Past experiences on IP have indicated that general-purpose IP algorithms do not work 

satisfactorily for all IP problems. Recently, the most promising developments have involved 

structural exploitation, where the particular structure of a problem has been used in the 

development of the solution algorithm. Benders Decomposition and Lagrangian Relaxation are 

two examples of structural exploitation. Some problem reformulation approaches and also 

specialized branch and bound algorithms adapted to particular problems are examples of 

structural exploitation. The main mechanisms for structural exploitation are to develop an 

algorithm especially tuned to a particular problem or, more generally, to transform a problem 

into a simpler problem to solve. The application of such algorithms has sometimes led to 

spectacular results, with problems with thousands of variables being solved in seconds of 

computer time (McCarl and Spreen (1997)).  

 

Unfortunately, none of the available algorithms have been shown to perform satisfactorily for all 

IP problems. However, certain types of algorithms are good at solving certain types of problems 

and a number of efforts have concentrated on algorithmic development for specially structured 

IP problems. The following section reviews some of approaches used in emergency logistics 

literature. 

2.2. SOLUTION APPROACHES USED IN EMERGENCY LOGISTICS LITERATURE 

section 1.2 provided an extensive review of previous research in the emergency logistics 

literature. From the number of researches discussed in section  1.2 only four publications are 

found to have a mathematical model that are partially similar to the mathematical model 

proposed in this research. In the following paragraphs the solution approaches used in these four 

publications are reviewed. 

 

Haghani and Oh (1996) proposed a formulation and solution of a multi-commodity, multi-modal 

network flow model for disaster relief operations. Their model can determine detailed routing 

and scheduling plans for multiple transportation modes carrying various relief commodities from 

multiple supply points to demand points in the disaster area. They formulated the multi-depot 
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mixed pickup and delivery vehicle routing problem with time windows as a special network flow 

problem over a time-space network. The objective was minimizing the sum of the vehicular flow 

costs, commodity flow costs, supply/demand storage costs and inter-modal transfer costs over all 

time periods. Structurally, their model was composed of two network flow problems; one with 

only real-valued variables and the other with integer variables were connected with a set of 

capacity constraints called linkage constraints.  

 

They developed two heuristic solution algorithms; the first one was a Lagrangian relaxation 

approach, and the second was an iterative fix-and-run process. The first solution algorithm 

decomposes the model into two subproblems based on the relaxation of linkage constraints. 

Lagrangian relaxation is used with penalty for shortage of capacity for linkage constraints. The 

algorithm was iteratively applied until two subproblems converge. The second solution algorithm 

was an ad hoc method that fixed integer variables gradually. First all integer variables were 

relaxed and LP relaxation is solved. Then based on the LP solution, the values of some of the 

integer variables were fixed to an integer value and the LP was solved again. This process was 

repeated iteratively until all integer variables are fixed to integer values. 

 

Haghani and Oh (1996) solved several instances of numerical problems with both algorithms. 

For smaller size problems, they showed both algorithms were successful in solving integer 

problem instances much faster than commercial solvers. They also showed for larger problem 

instances that the commercial solver was unable to find the optimal solution, both algorithms 

were able to find close to optimal solution in relatively short CPU times. Comparing the two 

algorithms, they concluded that the proposed fix-and-run algorithm outperforms the Lagrangian 

relaxation algorithm both in CPU time and final solution quality. 

Barbarosoglu and Arda (2004) developed a two-stage stochastic programming model for 

transportation planning in disaster response. Their study expanded on the deterministic multi-

commodity, multi-modal network flow problem of Haghani and Oh (1996) by including 

uncertainties in supply, route capacities, and demand requirements. The authors designed 8 

earthquake scenarios to test their approach on real-world problem instances. Their model is a 

planning model that does not deal with details required at strategic or operational levels. The 

model does not address facility location problem or vehicle routing problem as well.  
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To solve numerical examples, Barbarosoglu and Arda (2004) in the first stage generate random 

scenarios for supply, demand, and available capacity. In the second stage they used the 

commercial solver GAMS to solve the resulted network flow problem to minimize the cost. They 

did not propose any special solution algorithms but used GAMS software to solve the numerical 

studies. 

 

Ozdamar et al. (2004) addressed an emergency logistics problem for distributing multiple 

commodities from a number of supply centers to distribution centers near the affected areas. 

They formulated a multi-period multi-commodity network flow model to determine pickup and 

delivery schedules for vehicles as well as the quantities of loads delivered on these routes, with 

the objective of minimizing the amount of unsatisfied demand over time. The structure of the 

proposed formulation enabled them to regenerate plans based on changing demand, supply 

quantities, and fleet size. They developed an iterative Lagrangian relaxation algorithm and a 

greedy heuristic to solve the problem. 

 

The Lagrangian relaxation approach used in Ozdamar et al. (2004) was similar to the one 

previously discussed in Haghani and Oh (1996) with the only change that Ozdamar et al. (2004)  

used commercial solver GAMS to solve the linear relaxations. The proposed greedy algorithm 

solves the network flow problem without considering vehicles to find the best routes for the flow 

of commodities. Then the algorithm assigns the vehicles to the first available shipment so to 

minimize the shipment delay. If the vehicles are not available immediately, the shipment is 

postponed till the earliest available vehicle arrives.  

 

The greedy approach is myopic in the sense that the vehicles are independently assigned to the 

first available job instead of considering the other combinations that might be more rewarding. 

Comparing the Lagrangian relaxation algorithm and the Greedy algorithm in Ozdamar et al. 

(2004), it was concluded that the greedy algorithm performs faster than Lagrangean relaxation 

algorithm. However, the greedy algorithm usually resulted larger gaps with global optimal 

compared to the Lagrangian relaxation. Greedy algorithm did not perform good especially when 

the capacity was tight which is usually the case in disaster response operations. 
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Finally, Yi and Ozdamar (2007) proposed a model that integrated the supply delivery with 

evacuation of wounded people in disaster response activities. They considered establishment of 

temporary emergency facilities in disaster area to serve the medical needs of victims 

immediately after disaster. They used the capacity of vehicles to move wounded people as well 

as relief commodities. Their model considered vehicle routing problem in conjunction with 

facility location problem. The proposed model is a mixed integer multi-commodity network flow 

model that treats vehicles as integer commodity flows rather than binary variables.  

 

Their numerical experiment considered a potential earthquake scenario for the city of Istanbul in 

Turkey. The numerical problem had 20 nodes, 3 transportation modes, 2 relief commodities and 

modeled for 8 time periods. They used commercial solver CPLEX 7.5 to solve the IP model. 

They did not propose any new solution algorithm to the problem however they offers an 

algorithm to find the itinerary of vehicles from the optimal solution output of CPLEX integer 

programming solver. They reported that post processing algorithm was pseudo-polynomial in 

terms of the number of vehicles utilized. 

 

Yi and Ozdamar (2007) took the network flow vehicle routing (where vehicles are treated as 

general integer-valued commodities) and compared it with classic 0-1 vehicle routing. They 

showed that the general integer formulation is more compact and it is much more efficient for 

solving. They experienced CPU times ―in seconds‖ for general integer VRP versus ―in minutes‖ 

for classic binary VRP. However in general integer VRP, post processing was needed to extract 

detailed vehicle routing and pickup or delivery schedules. 

 

To summarize, it is shown that in previous publications only a few mathematical models can be 

found which have relatively similar structures to the model proposed in this research. In those 

publication, three solution approaches are proposed and tested; Lagrangian Relaxation, Fix-and-

Run Heuristic, and Greedy Heuristic algorithm. Lagrangian relaxation is successful in proving a 

bound but it was shown to be the most time consuming algorithm. Greedy Heuristic algorithm 

was shown to be faster compared to Lagrangian relaxation algorithm. However, it lacked in the 

quality of final optimal solution and resulted in large optimality gaps especially when 
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transportation capacity was limited. Fix-and-Run heuristic outperformed Lagrangian Relaxation 

in both categories of speed and solution quality. Fix-and-Run heuristic compared to Lagrangian 

relaxation found the final solution in less CPU time and resulted in smaller optimality gap. 

 

2.3. SOLUTION TECHNIQUES FOR PROPOSED MATHEMATICAL MODEL 

The mathematical model proposed in section 1.4 is a complex integrated model. Such an 

integrated model provides the opportunity for a centralized operation plan that can eliminate 

delays and assign the limited resources to the best possible use. However, the model is a large-

scale mixed general integer programming model and solving such a comprehensive 

mathematical model is a big challenge. As it is shown in numerical experiments in section 1.5, 

the commercial solver was unable to find the optimal solution in a reasonable time. 

 

Based on the analysis of solution techniques for similar models in the literature, it is concluded 

that exact solution algorithms will not be able to solve the model. Consequently, the best 

approach might be designing fast heuristic algorithms that can find near optimal solutions in 

relatively short computation times. On the other hand, since this model is more complicated than 

all the previous works in the literature, it would be favorable to structurally decompose this 

problem to some smaller or easier problems.  

 

This model integrates commodity flow problem which is a linear multi-commodity network flow 

problem with multi-echelon facility location problem which is a binary mixed integer program, 

and multimodal vehicle routing problem which is a large-scale general integer-valued network 

flow problem. The Idea is to decompose this problem into smaller or easier problems while 

taking advantage of special structures that already exist.  

 

The multi-commodity network flow problem is a linear program. LP models are considered easy-

to-solve since efficient solution algorithms and commercial solvers exist that can quickly solve 

large-scale linear programs.  The difficult parts are the two integer programming subproblems. In 

the following sections, a number of heuristic algorithms are proposed to solve the integer 

programming part of mathematical model. First in section 2.4, four heuristics are proposed to 



  

 43 

solve the hierarchical location finding problem. Then in section 2.5, four new heuristic 

algorithms are proposed to solve the general integer vehicle routing problem. 

 

2.4 ALGORITHMS FOR SOLVING LOCATION PROBLEM 

As discussed earlier, the mathematical formulation presented in section 1.4 is composed of three 

subproblems. The linear commodity flow subproblem is considered easy and can be solved in 

conjunction to the facility location problem. On the other hand, the general integer vehicle 

routing subproblem is a large-scale mixed integer program itself which is considered very 

difficult to solve.  

 

This problem is not mathematically decomposable and it is important to keep the interrelations 

between the three subproblems. To do so, it is suggested to first relax the integrality condition of 

vehicle routing subproblem and try to solve the location problem. When the optimal locations are 

known, it would be much easier to solve the vehicle routing problem. Considering relaxed VRP 

problem inside the location finding problem is a big advantage because it is easier to solve 

meanwhile it still reflects the effects of the VRP and available transportation capacity on the 

location finding problem. The mathematical formulation of this location problem can be obtained 

by only relaxing the 
m

ijtY  variables (general integer variables related to vehicle routing problem) 

in the original model presented in section  1.4. 

 

In the following subsections, four solution approaches are proposed to solve the location finding 

problem.  

2.4.1 EXPLICIT ENUMERATION 

The candidate sites for temporary facility locations are chosen prior to emergency response. 

Consequently, the number of potential sites is known and the number of possible combinations 

for facility locations is a finite number. The simplest conceivable optimization approach is 

explicit enumeration. It is possible to generate all possible solutions, evaluate each of them, and 

keep the best.  
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To test the applicability of explicit enumeration, let’s use the numerical example introduced in 

section 1.5: 

Combinations for selecting 2 MOB out of 4 candidates:  6
!2!2

!4
  

Combinations for selecting 2 FOSA out of 4 candidates:  6
!2!2

!4
  

Combinations for selecting 4 SSA out of 10 candidates:  210
!6!4

!10
  

Total number of combinations is equal to  756021066  . For any given locations, the 

remaining problem is a linear program that has a network structure. Linear network problems are 

considered easy to solve since good algorithms and efficient commercial solvers are developed 

to solve that problem. For instance, for linear relaxation of the numerical experiment introduced 

in section 1.5 with given locations, CPLEX solver was able to solve the problem in around 7 

seconds on average. If it is required to enumerate all combinations, the total CPU time is equal to 

hours7.14sec52920sec77560  . 

 

It can be concluded that since it is easy to solve the problem after locations are given, it is still 

possible to explicitly enumerate all combinations and find the final optimal solution. It might not 

be wise to solve for every single combination, however, it indicates the level of difficulty of the 

IP problem and provides a benchmark for development and comparison of other solution 

algorithms. Some other heuristic algorithms are introduced in the following subsections.  

2.4.2 BRANCH AND BOUND - HIERARCHICAL DECOMPOSITION 

Branch and Bound algorithm is widely used to solve integer programs. It is especially successful 

when the integer variables are 0-1 binary variables as it is the case in location finding problems. 

Good algorithms and efficient commercial solvers are developed that use the branch and bound 

technique. CPLEX solver is a commercial solver that can apply Branch and Bound to solve 

binary mixed integer programs.  

 

The proposed mathematical model contains three levels of temporary facilities. Mobilization 

Centers (MOB) are at the top. Federal Operational Staging Areas (FOSA) are the intermediate 

level facilities and receive commodities from MOB. Then there are State Staging Areas (SSA) 
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that receive commodities from FOSAs. It is possible to use branch and bound to solve all three 

levels simultaneously. However, it is possible to hierarchically decompose the facility location 

problems and solve them consecutively.   

 

Three decomposition approaches are proposed and tested: 

1. Top then Bottom: Decompose the problem into federal level facilities and state 

level facilities. Assume all state level facilities are open (i.e. 

SSAiLoci 1 ). Solve the integer program to find the optimal locations 

for federal level facilities. Fix the solution for top level and solve the integer 

program for the state level facilities. 

2. Bottom then Top: Decompose the problem into federal level facilities and state 

level facilities. Assume all federal level facilities are open (i.e. 

MOBFOSAiLoci 1 ). Solve the integer program to find the optimal 

locations for state level facilities. Fix the solution for bottom level and solve 

the integer program to find the optimal state level facilities. 

3. Tier by Tier: First solve the integer program to find the optimal locations for 

MOB level facilities assuming all other facilities are open. Then fix the optimal 

MOB, assume all SSA are open and solve IP for FOSA facilities. Finally, fix 

optimal MOB and FOSA then solve for SSA. 

 

Table 2.1 shows the results of applying the abovementioned approaches to the numerical 

problem in section 1.5. Comparing the total CPU times, it can be seen that Tier by Tier 

decomposition resulted in the least computation time. It was able to reduce the CPU time from 

379 seconds when all tiers are considered together, to about 203 seconds (a reduction of about 

46%). The Top-then-Bottom approach also gives good results with a total of 215 seconds 

computation time (43% reduction). On the other hand, it seems that for the current example, 

Bottom-then-Top approach did not provide favorable results. Mainly, when all federal level 

facilities are forced to be open, it forces an unnecessarily large number of combinations. 

Exploring all those combinations resulted in higher than usual computation times in Bottom-

then-Top approach. 
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Table 2.1- Branch and Bound and Hierarchical Decomposition  

Case
Solution 

Time
Final Obj Iterations

Total 

Time (S)

Solve for All Location Tiers 378.69 3.83595 E+7 204402 378.69

All State Level = 1, Solve for FED level 191.91 3.83595 E+7 181589

Given FED level, SOLVE for State 22.92 3.83595 E+7 43781

ALL FED level = 1, Solve for State 819.23 3.77795 E+7 559223

Given State, Solve for FED 138.97 3.83595 E+7 106213

Solve for MOB, Rest = 1 151.03 3.82113 E+7 139943

Given MOB, Solve for FOSA, SSA =1 28.66 3.83595 E+7 59960

Given MOB & FOSA, Solve for SSA 22.94 3.83595 E+7 43781

214.83

958.2

202.63

 

Solution times are for solver CPLEX 11.0 on a machine with 3GHz CPU and 4GB RAM  

 

It is important to mention that all three proposed approaches provided the same optimal solution. 

Even though it is not a proof, it is a very favorable property to have a number of heuristics 

algorithms than find the exact solution. The design of proposed hierarchical decompositions 

allowed the heuristics to find the exact optimal solutions by not cutting the feasible region. For 

example in Tier-by-Tier approach, when solving for top tier (MOB level), all other lower level 

facilities are forced to be open regardless of the limitation on the maximum number of open 

facilities in lower levels. This provides the chance to find the optimal locations for the tier in 

hand because all lower levels facilities are at their best theoretical combinations.  

 

2.4.3 HIGHEST CAPACITY RATIO 

Solving linear relaxation of integer programming problems and analyzing the results can reveal 

very valuable insights. The idea in this heuristic is to use the linear relaxation to find the facility 

or facilities that are most important for the performance of the system. Returning to capacity 

constraints in the mathematical formulation in section 1.4, the following equation enforces the 

sum of all flows leaving facility i, to be less than Loading Capacity of facility i if it is selected to 

be open; or to be zero otherwise: 

tmiLocLcapX i

m

it

c j

cm

ijt ,,    
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If the binary integer variable Loci is relaxed to take any real number between 0 and 1, it can 

show the capacity ratio that is used in facility i. The facilities with higher capacity ratios are 

more favorable because they handle the most flow and their existence is more important to the 

entire response operations.  

 

The steps of Highest Capacity Ratio (HCR) Algorithm are: 

Step 1- Relax the integrality condition for all temporary facility variables 

Step 2- Add 10  iLoc for all relaxed binary variables 

Step 3- Solve the Linear Relaxation problem and obtain optimal values for all Loci 

variables  

Step 4- For each facility type; sort the Loci variables in descending order 

Step 5- For each facility type; select the maximum number of facilities allowed from top 

of the list 

 

By following the above steps, one can find the selected facilities in a single snapshot. However, 

it can be argued that selecting a facility may affect the selection of others. So it might be 

beneficial to select the one facility with the highest ratio, solve the linear relaxation again, and 

repeat until maximum number of each facility is selected. 

 

The steps of Iterative Highest Capacity Ratio (IHCR) algorithm are: 

Step 1- Relax the integrality condition for all temporary facility variables 

Step 2- Add 10  iLoc for all relaxed binary variables 

Step 3- Solve the Linear Relaxation problem and obtain optimal values for all Loci 

variables  

Step 4- Find the facility i with the highest Loci value 

Step 5- If the maximum number of facilities are not reached, select Facility i, add 

1iLoc to the formulation and go to Step 3. Otherwise stop. 

 

To test HCR algorithm, the LP relaxation of the numerical experiment formerly introduced in 

section 1.5 is solved again. Table 2.2 shows the values for relaxed Loci variables. The constraints 
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on the maximum number of facilities required the selection of 2 MOB out of 4, 2 FOSA out of 4 

and 4 SSA out of 10 potential SSA nodes. Solving the linear relaxation with additional 

10  iLoc constraints only took about 32 seconds. The resulted node selection shown in Table 

2.2 is obtained with using the single snapshot HCR algorithm. It is worth mentioning that for this 

example, the HCR algorithm was able to find the exact optimal solution and did so incredibly 

faster than Branch and Bound method (32 seconds versus 379 seconds). 

 

Table 2.2 Values of Loci variables for HCR Heuristic Algorithm 

Facility Type MOB FOSA SSA 

Loci Value 

0.6807 1.0 1.0 0.6174 

1.0 0 0.5357 0.3131 

0 0.8532 0.4164 0.8359 

0.3193 0.1468 0 0.2054 

- - 0 0.0762 

Selected Nodes 4 , 5 8 , 10 12 , 13 , 17 , 19 

 

2.4.4 STATIC NETWORK-LOCATION 

Considering a time varying structure and a time-space network is essential to capture the details 

of emergency response logistics at the operational level. However, it expands the size of the 

formulation drastically and makes the problem extremely difficult to solve. The idea for this 

heuristic is to build a static version of the formulation that can be solved much easier and faster. 

It should still consider the special structure of the network and account for supplies, demands, 

and facility capacities; but manage to aggregate over the time dimension in order to generate a 

smaller formulation. To do so, the following mathematical formulation is proposed: 

 


m c ji

cm

ij

m

ij XtMin
,

.        (2.1) 

cUiSupXX c

i

m j

cm

ji

m j

cm

ij ,      (2.2) 

cWiXX
m j

cm

ji

m j

cm

ij ,0       (2.3) 
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cViDemXX c

i

m j

cm

ji

m j

cm

ij ,     (2.4) 

mUiLcapX m

i

c j

cm

ij ,       (2.5) 

mVUiUcapX m

i

c j

cm

ji ,      (2.6) 

mWiLocLcapX i

m

i

c j

cm

ij ,.       (2.7) 

mWiLocUcapX i

m

i

c j

cm

ji ,.       (2.8) 

maxLocLoc
i

i          (2.9) 

  WiLoci  1,0   and  mcjiX cm

ij ,,,0   

 

The notations are similar to the original problem that is previously defined in section 3.5 with the 

exception that time index t is dropped from all variables and parameters. As a result, all variables 

and parameters are static and defined as the aggregate value of the original variables over all 

time periods. For example, c

iSup  and c

iDem are the aggregate supply and aggregate demand of 

commodity c in node i, over the entire planning horizon. Decision variable cm

ijX is the aggregate 

amount of commodity c that is shipped from node i to node j with transportation mode m, over 

the entire planning horizon. 

 

In this formulation the details of unsatisfied demand over time is not available. Consequently, the 

objective function (2.1) is chosen to minimize the total travel time by all commodities. Equation 

(2.2) and (2.4) enforce the supply and demand constraints for each node and each commodity. 

Equation (2.3) imposes the conservation of flow at intermediate nodes. Loading and unloading 

capacity constraints are defined in equations (2.5) and (2.6) for the permanent facilities. Similar 

constraints for temporary facilities are required by equations (2.7) and (2.8). Finally, equation 

(2.9) enforces the maximum number of open facilities for each facility type. 

 

In the proposed static formulation, vehicle routing constraints are dropped from the formulation. 

It is equivalent to assume that ample transportation capacity is available or the initial distribution 
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of vehicles is done in such a way that does not affect the choice of temporary facilities. Also, 

time-space structure is removed from the original model. It can be explained if the variations of 

supplies, demands, and capacities over the planning horizon are not very drastic. No link 

capacity is imposed in this formulation; however capacity limitations are reflected in loading and 

unloading capacities for each facility. 

 

It should be noticed that the static formulation is still an integer programming model. However, 

it is of much lower size and complexity compared to the original formulation while still 

reflecting the structure and important properties of the original model.  

 

Similar to previous heuristics, Static Network Location Problem (SNLP) heuristic is also tested 

with the numerical example of section 1.5. CPLEX solver version 11.0 is used to solve the 

problem on a 3 GHz Dell desktop computer with 4GB of RAM. After presolve modifications, 

reduced MIP had 130 rows, 491 columns, and 1713 nonzeros. It took only 0.1 Seconds and 410 

iterations to solve the modified problem which is extremely faster than the previous heuristics. 

However, optimal locations obtained from this formulation do not match with the optimal 

locations of the original IP problem. Using the locations suggested by SNLP results in 2.5% 

higher objective function value compared to the case that exact optimal locations are used. 

 

To summarize, four heuristic approaches are proposed to solve the location finding problem.  

Computation times vary greatly across the algorithms ranging from 14 hours to 0.1 seconds. 

Firstly, Explicit Enumeration showed that even though LP solution when locations are given 

takes only 7 seconds, the large number of possible combinations makes it very difficult to 

explore all the combinations. Secondly, Hierarchical decomposition approach suggested that it is 

beneficial to choose it over the general branch and bound (46% faster). Among the three 

suggested Hierarchical decompositions, Tier-by-Tier decomposition was the fastest. Thirdly, 

Highest Capacity Ratio heuristic was the fastest among all other heuristics that could still find 

the exact optimal solution. And finally, SNLP proposed a new formulation that is very efficient 

and can be solved to find the locations for the original problem. SNLP was the fastest algorithm 

but the resulted locations were different from those of the exact optimal solution. 
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2.5 ALGORITHMS FOR SOLVING VEHICLE ROUTING PROBLEM 

In section 2.2 the relevant literature that suggested solution methods was summarized. Mainly, 

three heuristic approaches were proposed to solve the general integer vehicle routing problem: 

Lagrangian Relaxation, Fix-and-Run Algorithm, and a Greedy Algorithm. Using the numerical 

results, it was also concluded that the Fix-and-Run algorithm proposed by Haghani and Oh 

(1996) had the performance. It was the fastest algorithm and it had the least optimality gap 

compared to the other algorithms. 

 

In the following subsections, four heuristic algorithms are proposed to solve the general integer 

vehicle routing problem. The general idea is adopted from the successful experience of Fix-and-

Run heuristic algorithm suggested by Haghani and Oh (1996). The main steps of the proposed 

algorithms are: 

1. The mixed integer linear problem is solved with the relaxation of integer variables.  

2. The values of some integer variables are fixed in an orderly manner and the problem is 

solved again with the relaxation of the remaining integer variables iteratively.  

3. When all integer variables are fixed, the process is terminated.  

2.5.1 T-Counter Heuristic 

 

The steps of T-Counter algorithm are: 

 

 Step 1- Relax all general integer variables and solve the relaxed LP. Set t=0 

Step 2- Check all m

ijtY  variables for current time period t. If all m

ijtY variables are integer, 

then if t = tlast, terminate. Otherwise, set t = t + 1 and restart Step 2. 

 Step 3- For current time period t, fix all m

ijtY variables to the closest integer number 

 Step 4- Create a new problem by adding ( m

ijtY = the fixed value from step 3) constraints to 

the problem 

 Step 4- Relax the rest of the integer variables and solve the new LP problem 

 Step 5- Set t = t + 1 and go to Step 2 
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In this algorithm, starting from the first time period, Y variables are fixed iteratively and in a 

chronological order. If the flow of the vehicles through the network is fixed to be integral at time 

period t, because of the network structure of the problem, it is more likely that the flows at time 

periods after t, also turn out to be integral. Conservation of flow in a time-space network requires 

that if the flows that enter a node are integer, then some of the flows that leave the same node 

must also be integral. This does not mean that every single flow leaving that node will definitely 

be integer but it is a necessary condition.  

 

If the planning horizon of the problem is consisted of T time periods, then at the worst case the 

algorithm will go through only T iterations. It is the worst case scenario and not the average case 

because during an iteration if all Y variables are already integer, the algorithm directly proceeds 

to next t without solving a LP relaxation. This is a very important property to have because this 

algorithm will stop at most after T iterations. Fast convergence rate is expected from this 

algorithm.  

 

2.5.2 Origin-Based T-Counter Heuristic 

In the previous algorithm, in each iteration all the m

ijtY variables for current time period t are fixed 

at the same time. That approach reduces the flexibility of the algorithm to reroute the vehicles 

within one time period which can sometimes cause suboptimal assignments. To remedy this, 

Origin-based T-Counter heuristic algorithms is proposed. In this algorithm, outgoing flows from 

only one origin node will be fixed during each iteration. In other words, for current time period t, 

we start from node i = 1 and fix all outgoing m

ijtY variables, solve LP relaxation, then fix all flows 

from node i = 2, and move to the next node until all nodes are fixed. Then the same procedure is 

followed for the next time periods until the end of the planning horizon. 

 

The steps of Origin-based T-Counter algorithm are: 

 

1- Set t = 0 and i=1 

2- Relax all general integer variables and solve the relaxed LP. 

3- If all relaxed variables are integer, the IP solution is found, Terminate 
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4- For current t and i, fix all m

ijtY variables to the closest integer number 

5- Create a new problem by adding ( m

ijtY = the fixed value from step 4) constraints 

6- If i < ilast then set i = i + 1 and go to step 2. Otherwise go to the next step 

7- If t = tlast terminate otherwise set i = 1 and set t = t +1, go to step 2 

 

This algorithm is more general compared to T-Counter algorithm. If the planning horizon of the 

problem is consisted of T time periods and N is the number of nodes in the network, then at most 

T × N iterations are required to solve the problem. Again this is a worst case scenario and in 

general the algorithm is expected to find the integer solution before going  through all T × N 

iterations. 

 

2.5.3 Y-List Heuristic 

In the previous two algorithms, several Y variables are fixed during each iteration. For example 

in T-Counter algorithm, at first iteration all m

ijtY variables with t = 0 are fixed simultaneously that 

can lead to under utilization of the available vehicles. For more clarification assume a 

hypothetical scenario where there are 4 vehicles available at node i and 3 exactly similar arcs are 

leaving node i. Solving the linear relaxation of the problem will assign 1.33 vehicles to each 

path. Applying T-Counter algorithm or even Origin-based T-Counter algorithm to this example 

rounds down 1.33 and as a results it assignments 1 vehicle to each path and 1 vehicle will remain 

unused.  

 

The idea of Y-List algorithm is to solve this problem by only fixing one Y variable in each 

iteration. This will allow the LP model to adjust itself and take advantage of any potential 

vehicles that might be available and are not being used due to rounding down. Returning to our 

hypothetical scenario, if the 3 arcs are fixed one by one then all available vehicles will be used. 

The vehicle assignment will be 1, 1, 2 and all 4 vehicles are utilized. 

 

To run this algorithm, it is required to have a priority list of all Y variables. When the first LP 

relaxation is solved, the algorithm needs to select a Y variable among all non-integer Y variables 
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to fix. It is faster to have a pre-populated list of all Y variables and then fix them one by one if 

they have a non-integer value. The steps of Y-List algorithm are: 

1- Populate a sorted list of all m

ijtY  variables 

2- Relax all general integer variables and solve the relaxed LP 

3- If all m

ijtY variables are integer, save the solution & terminate the algorithm, otherwise 

4- Select the 1st m

ijtY from the list, Fix it to the closest integer number and remove it from 

the Y-list 

5- Create a new problem by adding ( m

ijtY = the fixed value from step 4) constraint 

6- Go to step 2  

 

Theoretically in the worst case scenario, the algorithm can go through Y  iterations. Y is the 

total number of all m

ijtY  variables and also the size of the Y-List set. In large scale numerical 

problems, Y  can be a very large number. For example in the numerical experiment in section 

1.5, thousands of m

ijtY  variables exist. In the worst case scenario the algorithm need to go over 

thousands of iterations and fix every single Y variable. However, as it will be shown, usually the 

algorithm does not need to fix every single Y variable before finding an IP solution. In fact due 

to having a network structure, an IP solution is found very quickly and the algorithm converges 

relatively fast in typical numerical examples.  

 

2.5.4 Y-List Modal Heuristic 

In large-scale logistic operations often multiple transportation modes are utilized. From 

theoretical perspective, each transportation mode can be considered as the flow of special 

commodity over the network. Different transportation modes are not competing for share 

resources and there is no explicit constraint that relates the flow of different modes. 

Consequently, it can be assumed that each transportation mode is acting somehow 

independently. It should be mentioned that relief commodities that are carried by each 

transportation mode can be transferred to another mode inside intermodal terminal but the 

vehicles of each mode are never interchangeable. For example, if 2 trucks and 2 helicopters enter 
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a node, always the same 2 trucks and 2 Helicopters have to leave that node and it can never 

transform into 3 trucks and 1 helicopter.  

 

Taking advantage of this independence among multiple transportation modes is the idea behind 

Y-List Modal heuristic. Y-List Modal is very similar to previously described Y-List heuristic, 

however it tries to fix a Y variable from each transportation mode during any iteration.  For 

example, if two transportation modes exist, the algorithm will fix two Y variables in each 

iteration. Consequently, if M  is the number of available transportation modes, the algorithm 

will fix M  variables in each iteration and it can stop after Y / M  iterations in the worst case. 

 

The steps of Y-List Modal algorithm are: 

1- Populate a sorted list of all m

ijtY  variables for each mode m 

2- Relax all general integer variables and solve the relaxed LP 

3- If all m

ijtY variables are integer, save the solution & terminate the algorithm, otherwise 

4- For each mode m, Select the 1st m

ijtY from the list, Fix it to the closest integer number 

and remove it from it’s Y-list 

5- Create a new problem by adding ( m

ijtY = the fixed value from step 4) constraints 

6- Go to step 2  

 

2.5.5 Comparing Performance of the Proposed Algorithms 

In previous sections, four heuristic algorithms are proposed to solve the general integer vehicle 

routing problem. In this section, these algorithms are analyzed and their performance is 

compared. All four algorithms are applied to a similar numerical example that is previously 

defined in section 1.5. The facility location problem is solved in previous step and the optimal 

locations of the facilities are assumed to be known at this stage. 

 

The mathematical model is generated and initially solved by CPLEX Sofware. Table 2.3 

represents the statistics of the mathematical model and also the optimization results obtained by 

the commercial solver. It is shown that the problem is a large-scale mixed integer program with a 
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large number of general integer variables. CPLEX version 11.0 is used on a Dell desktop 

computer with 3 GHz Intel CPU and 4 GB of RAM. As it can be seen in the table, the software 

got to as close as 0.5 percent gap but it was unable to find the exact solution for the problem 

even after a long computation time. 0.5 percent optimality gap should be acceptable in many 

applications, nonetheless it shows the difficulty of solving the MIP problem even with a strong 

commercial solver on a fast computer. 

 

Table 2.3- Statistics and Optimization Results from CPLEX Solver 

Problem Stats 

Objective nonzeros = 3881 

Variables : 110572 [Nonnegative : 48300, Binary : 18, General Integer : 62254 ] 

Linear Constraints : 36593 [Equality : 11960 , Non-equality : 24633 ] 

Nonzeros : 372305    [RHS nonzero : 1467] 

CPLEX Optimization Results 

Objective 

Value 

Solution 

Time (s) 

GAP 

(%) 

Initial LP 

Bound 

MIP Best 

Bound 
Comments 

3.8709 E+7 81000 0.51 3.8059E7 3.8511E7 
Program Stopped by User 

after 22.5 hrs 

 

Table 2.4 show the results of solving the same problem using the four heuristic algorithms 

proposed in this chapter to solve general integer vehicle routing problem. Comparing gap 

percentiles from the best IP, it is concluded that the proposed algorithms were generally 

successful. Three of the four proposed heuristic algorithms provided very small optimality gaps 

of between 1 and 2.5 percent to the best IP solution provided by the commercial software after 

22.5 hours. Comparing the solution times is even more impressive. It can be seen that all 

algorithms found an IP solution and all of them converged in less than about 4 minutes. It is very 

important to quickly find close to optimal solution especially in this problem that deals with 

dynamic emergency response operations.  
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Table 2.4 – Numerical Results of proposed VRP Heuristic Algorithms 

ALGORITHM 
Objective 

Value (E+7) 

% GAP 

(Initial LP) 

%GAP 

(Best IP) 

Iterations 
Solution 

Time (s) 

T-Counter 4.2525 10.85 9.85 98 113.3 

Origin-Based 

T-Counter 
3.9668 3.41 2.47 3977 247.1 

Y-List 3.91615 2.09 1.16 851 89.1 

Y-List Modal 3.9300 2.45 1.52 507 73.7 

 

Comparing the four algorithms, the Y-List algorithm is shown to find the best solution quality 

with the minimum gap. Y-List Modal and Origin-Based T-Counter algorithms also resulted in 

very good objective functions and small optimality gap. T-Counter algorithm has the largest gap 

of about 10 percent. It should be reminded that the idea for T-Counter algorithm was adopted 

from Haghani and Oh (1996) which was the best practice available to this date, to the best of our 

knowledge. 

 

Comparing the solution speed and rate of convergence, it can be seen that all algorithms are quite 

fast. Y-List Modal was the fastest algorithm with only 73.7 seconds CPU time. Y-List and T-

Counter algorithms are in 2
nd

 and 3
rd

 place with relatively close solution times. Y-List Modal 

produced the longest solution time of about 4 minutes, mainly due to the large number of 

iterations that was required. It is very important to notice that the number of iterations is not 

directly related to the solution time, because different iterations take different CPU times. For 

example, Origin-Based T-Counter goes through about 4000 iterations in about 4 minutes 

compared to about 100 iterations of T-Counter that takes about 2 minutes. Also, Y-List Modal 

that recorded the least solution time, does not have the least number of iterations. 

 

Figure 2.1 show the convergence rate of the four algorithms. All algorithms initially start from 

LP relaxed solution which is an infeasible solution for the IP problem. Over time, algorithms try 

to find integer solutions and reduce this infeasibility.  As more and more integer variables are 

found, the objective function increases. In this way, as soon as an all-integer set of variables are 
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found; the algorithms will stop and report the best solution that is feasible for the IP problem. 

Figure 2.1 shows a steep slope only for T-Counter algorithm and all other algorithms have a 

steady and very gradual slope. The main reason is that T-Counter algorithm fixes a large number 

of integer variables in each iteration which reduces the number of iterations but on the other hand 

does not permit the LP relaxation to re-adjust and utilize the vehicles that are left behind due to 

rounding down. All other three algorithms, fix a very small number of variables in each 

iterations. This allows the LP relaxation to adjust to the fixed values and re-route the 

commodities and vehicles to take advantage of any remaining transportation capacity. 
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 Figure 2.1 – Convergence Rate Comparison of the Proposed Algorithms 

 

Table 2.5 summarizes the analysis and comparisons of the four proposed algorithms. Each row 

show a criteria and comparatively ranks the four algorithms for that criteria. For example in best 

solution criteria, Y-List and Y-List Mode are ranked one and two. Comparing the convergence 

rate, it can be seen that Y-List Modal was the fastest algorithm followed by Y-List algorithm. On 

the other hand when the Least number of iterations are compared, T-Counter is the winner. Also 

for theoretical worst-case criteria, T-Counter and Origin-Based T-Counter algorithms are ranked 

1
st
 and 2

nd
. As explained earlier, one iteration of each algorithm does not take the same amount 
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of time as one iteration of other algorithms. Origin-Based T-Counter has the fastest time per 

iteration followed by Y-List algorithm. 

 

Table 5.5 – Comparative Ranking of the Proposed Heuristic Algorithm 

Comparative 

Ranking  
T-Counter 

Orig.Based T-

Counter 
Y-list Y-list Modal 

Best Solution 

Quality  
4th  3rd  1st  2nd  

Convergence 

Speed  
3rd  4th  2nd  1st  

Least No. of 

Iterations  
1st  4th  3rd  2nd  

Best worst-case 

Scenario 
1st  2nd  4th  3rd  

CPU Time per 

Iteration 
4th 1st 2nd 3rd 

 

 

2.5.6 Summary 

 

To summarize, it is shown that all four algorithms are capable of finding good quality solutions 

in relatively short computational times. Having short computation time is the most important 

property of the proposed algorithm which makes it possible to apply them in real-world dynamic 

operations. In Fact, the applicability of proposed mathematical model in section 1.4 could not be 

justified without fast solution algorithms that can adjust and re-optimize in real-time.  

 

Comparing the four algorithms, it is concluded that no single algorithm dominates the others in 

all ranking criteria. When solution quality and convergence speed is more important, Y-List and 

Y-List Modal are showed to perform better. On the other hand, when good performance under 

worst-case scenario is important, T-Counter and Origin-Based T-Counter algorithms are shown 

to have better statistics. 

 

It should be noted that all four of the proposed algorithms are heuristics algorithms.  Even 

though they showed very impressive results for the current numerical experiment, there is no 

proof that they will always have equally good performance for all problem instances. As 
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explained in section 2.1.5, this is in the nature of most heuristic algorithms and is not limited to 

this study. However, detailed sensitivity analysis and performing more numerical experiences 

under a range of conditions can better assess the merit and applicability of any heuristic 

algorithm. 
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